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The expression of human FUT1 in HT-29/M3 colon
cancer cells instructs the glycosylation of MUC1
and MUC5AC apomucins

Anna López-Ferrer and Carme de Bolós∗
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Recently, we have reported that in normal gastric epithelium, the expression of gastric apomucins MUC5AC and MUC6
is associated with the specific expression of type 1 and type 2 Lewis antigens, and FUT2 and FUT1 fucosyltransferases,
respectively. Until now, there are no data demonstrating the direct implication of specific glycosyltransferases in the
specific patterns of apomucin glycosylation.

HT29/M3 colon cancer cell line express MUC1, MUC5AC, type 1 Lewis antigens and FUT2 but not type 2 structures and
FUT1, as it occurs in the epithelial cells of the gastric superficial epithelium. These cells were transfected with the cDNA of
human FUT1, the α-1,2-fucosyltransferase responsible for the synthesis of type 2 Lewis antigens, to assess the implication
of FUT1 in the glycosylation of MUC1 and MUC5AC.

The M3-FUT1 clones obtained express high levels of type 2 Lewis antigens: H type 2 and Ley antigens. Immunopre-
cipitation of MUC1 and MUC5AC apomucins gives the direct evidence that FUT1 catalyses the addition of α-1,2-fucose
to these apomucins, supporting the hypothesis that the pattern of apomucin glycosylation is not only instructed by the
mucin primary sequence but also by the set of glycosyltransferases expressed in each specific cell type.
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Introduction

Mucins are highly O-glycosylated proteins that are the main
component of the mucus that covers the surface of all the epithe-
lial tissues. Until now, cDNAs coding for eleven different hu-
man mucin genes have been cloned (MUC1-MUC4, MUC5B,
MUC5AC, MUC6-MUC8, MUC11-MUC12) [1–5]. Each of
these genes displays a characteristic pattern of expression, nev-
ertheless, none of these gene products is restricted to a single
tissue or cell type [6,7].

The heterogeneity associated to the broad possibilities of gly-
cosylation of apomucins suggests different functions for mucins
in each of the tissues where they are expressed. Also, alterations
in the glycosydic component of the mucins may imply the loss
of their functionality or the acquisition of new capacities, as
is the ability to escape from the immune system [8] and the
increased capacity of invasion that acquire certain tumor cells
[9]. It has been reported on nuclear magnetic resonance stud-
ies [10] that the O-glycans attached to the MUC1 apomucin
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confer a rigid and long extending structure to the protein core.
These properties increase the invasive and metastatic potential
of tumor cells [11–13].

Lewis antigens are terminal fucosylated oligosaccharides
that are synthesised by the sequential action of specific glyco-
syltransferases. The family of α-1,2-fucosyltransferases catal-
yse the addition of fucose in α-1,2-linkage to the galactose
of type 1(Galβ1,3GlcNAc-R) and type 2 (Galβ1,4GlcNAc-
R) disaccharide to form H type 1 and H type 2 antigens, re-
spectively. Two human α-1,2-fucosyltransferases have been
cloned: FUT1 [14] and FUT2 [15] also named H and Se-
cretor genes respectively. α2,3-sialyltransferases catalyse the
addition of sialic acid to the same positions in competi-
tion with α-1,2-fucosyltransferases. The human α-1,3/1,4-
fucosyltransferases that catalyse the addition of fucose to Glc-
NAc residues in type 1 and type 2 precursors are FUT3
[16], FUT4 [17], FUT5 [18], FUT6 [19] and FUT7 [20].
Among them, FUT3 is the Lewis gene, expressed in ep-
ithelial tissues and with α-1,3 and α-1,4-fucosyltransferase
activity.

The presence of Lewis antigens in the cell surface has
been related to many processes of intercellular recognition and
adhesion or cell-matrix interactions. Some examples are the
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interaction between E-selectin and s-Lea and s-Lex antigens
associated with glycolipids and glycoproteins expressed on the
surface of leukocytes. This interaction promotes the recruit-
ment of leukocytes to the sites of inflammation [21]. Also, α-
1,2-fucosylated antigens have been involved in cell motility
phenomenon in experimental in vitro models [22–24]. Fuco-
sylated structures are also implicated in bacterial adhesion at
the first stages of cell infection. In the gastric mucosa, it has
been reported that the adhesion of Helicobacter pylori to the
cells of the superficial epithelium of the gastric mucosa is me-
diated by the interaction of the bacteria with Leb-expressing
cells [25]. The analysis of the bacterial LPS has revealed the
presence of Lex and Ley mimicking those in the host to escape
from the immune system recognition. Several bacterial glyco-
syltransferases have been cloned [26] suggesting that these LPS
carbohydrates are synthesised by the bacteria [27–29]. In some
strains of H. pylori, the presence of type 1 Lewis antigens has
also been reported [30].

In previous studies, we have described that in the mucus-
secreting cells of the superficial epithelium of the gastric mu-
cosa, MUC5AC expression is associated with type 1 Lewis anti-
gens and FUT2 expression whereas in the mucus-secreting cells
of the deep glands, MUC6 is detected in association with type
2 Lewis antigens and FUT1. These data suggested that these
oligosaccharides could be directly glycosylating the apomucin
core [31,32]. To analyse the implication of FUT1 and FUT2 in
these patterns of association between apomucin and Lewis anti-
gen expression we selected the HT-29/M3 colon cancer cell line
from a characterised panel of cell lines [33] because these cells
express MUC1, MUC5AC, type 1 Lewis antigens and FUT2,
corresponding to the pattern of expression previously detected
in the superficial epithelium of the gastric mucosa [32]. Here, we
have analysed the pattern of apomucin glycosylation induced
by the expression of human FUT1 cDNA. From our results,
the expression of FUT1 induces the synthesis of type 2 anti-
gens, that coimmunoprecipitated with MUC1 and MUC5AC in
HT-29/M3 FUT1-transfected cells but not in the parental cell
line.

Materials and methods

Cell lines

HT-29/M3 human colon adenocarcinoma cells are derived from
the HT-29 colon cancer cell line treated with 10−3 M of
methotrexate [34]. HT-29/M3 cell monolayer is mainly con-
stituted by absorptive cells with low percentage of mucus-
secreting cells (<5%).

Cells were cultured in DMEM supplemented with 10%
FCS, 1% L-glutamine, non-essential aminoacids, penicillin and
streptomycin (Life Technologies, Inc.) at 37◦C in 5% CO2 at-
mosphere. Stable transfectants were cultured in DMEM sup-
plemented with 0.5 mg/ml G418 (Life Technologies, Inc.).

Cells were routinely checked for Mycoplasma contamination
(Stratagene).

Transfection and isolation of stable transfectants

HT-29/M3 cells were transfected with the full-length of hu-
man FUT1 cDNA (accession number M35531) inserted in the
pCDM7 expression vector (Dr. Lowe, Michigan, USA) [14]. 10
µg of the pCDM7-FUT1 construction and 10 µg of pSV2neo
plasmid were co-transfected using lipofectamine as described
by the manufacturer (Life Technologies, Inc). Control cells
were transfected with 10 µg of the empty vector and 10 µg
of pSV2neo. 72 hours later, 0.5 mg/ml G418 was added to the
medium to select transfected cells. Individual colonies were
isolated using cloning cylinders and expanded. Clones derived
from mock-transfected cells were pooled and used as control
cells.

RT-PCR

Total RNA was isolated from confluent cells following the
Chomczynski-Sacchi method. RNA quality was tested on 0.8%
formaldehyde-agarose gels. cDNA was synthesised using 5 µg
DNase I-treated RNA with 200 U MMLV-RT. Primers and con-
ditions for the amplification of FUT1 have been described pre-
viously [32,35].

Antibodies and immunohistochemical assays

Monoclonal antibodies M8 [36] CLH2 [37], T-218 [38] and
77/180 [31] that recognise MUC1, MUC5AC, Lewis b and
Lewis y respectively, were used as undiluted hybridoma su-
pernatant. Monoclonal antibodies BC3 [39] to detect MUC1
and 19-0LE [40] that recognise H type 2 antigen, were used
as ascites diluted at 1/250 and 1/1000 respectively. Purified B3
monoclonal antibody to detect Lewis y was used at 10 µg/ml
[41]. B12 MoAb (Dr. Castro, Barcelona, Spain) that recognises
a synthetic dextran molecule was used as negative control. Rab-
bit polyclonal serum LUM5.1 [42] detecting MUC5AC and pre-
immune rabbit serum used as a negative control were diluted at
1/1000. Indirect immunoperoxidase technique was performed
on paraffin embedded sections as described [32]. Scoring was
performed as an estimated of the whole section and evaluated
by two independent observers.

Flow cytometry

Confluent cells were trypsinized and counted. 106viable cells
were incubated for 30 minutes at 4◦C with the primary antibody
(M8, T-218 and 77/180 detecting MUC1, Lewis b and Lewis
y, respectively) diluted in serum free medium containing 0.5%
BSA and 0.2% sodium azide. Cells were rinsed in serum free
medium and incubated with the secondary FITC-labelled anti-
body for 30 minutes at 4◦C. After two washes, fluorescent anal-
ysis was performed using a FACScan (Becton-Dickinson, CA).

Tumorigenicity

Confluent cells (M3 parental and M3-FUT1 clones) were
trypsinized and 106 cells suspended in 0.1 ml D-MEM were
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injected subcutaneously into nude Balb/c mice. Animals were
killed when tumor size was 1 cm3. Tumors were embedded
in paraffin and immunohistochemistry was performed as de-
scribed [39]. In some cases, a fragment of the subcutaneous
tumor was finely minced and plated to culture tumor cells.

Western blotting

Cell lysates were prepared incubating the cells with 50 mM
TRIS pH 7.5, 5 mM EDTA, 6 mM guanidinium hydrochloride,
1 mM phenyl methyl sulfonyl fluoride and protease inhibitors
for 30 minutes, centrifuged and supernatant was used.

Proteins were reduced and applied on 4% SDS-PAGE run-
ning gels and transferred onto nitrocellulose (PROTRAN,
Schleicher and Schuell Gmbh, Germany) membranes. In se-
lected cases 6% SDS-PAGE running gels with 3.5% stacking
gels were used. Non-specific binding sites were blocked us-
ing 5% skim milk in PBS-0.1%Tween. Primary anti-mucin and
anti-sugar antibodies were incubated for 1 h in PBS containing
1% BSA. B12 MoAb and pre-immune rabbit serum were used
as negative controls diluted 1/5 and 1/1000 respectively. After 3
washes in PBS-0.1%Tween, peroxidase-conjugated secondary
antibodies were applied for 1 h. After washing, reaction was
revealed by chemiluminiscence using the ECL kit (Amersham
Pharmacia Biotech).

In some cases, membrane stripping was performed incubat-
ing the membranes in stripping buffer containing 100 mM 2-
mercaptoethanol and 2%SDS in 62.5 mM Tris-HCl pH 6.8 at
55◦C. The absence of bands after stripping was controlled in
all the cases.

Metabolic labelling and immunoprecipitation

6-well postconfluent cultures of HT-29/M3 cells were pre-
incubated with methionine free medium for 30 minutes at 37◦C.
Pulse labelling was performed with the addition of 10 µCi/ml L-
[35S]methionine to the cells and incubated for 1 h. The medium
containing the radiolabelled methionine was removed, cells
were rinsed with sterile PBS and medium containing 2 mM
methionine was added. Cells were incubated at 37◦C for 1–
24 h. After the corresponding pulse-chase experiment, cells
were washed with cold PBS and lysis buffer containing pro-
tease inhibitors was applied for 30 minutes. Cell were scraped
and centrifuged for 30 minutes. The supernatant was incubated
with anti-apomucin antibodies overnight at 4◦C. B12 MoAb and
pre-immune rabbit serum were used as negative controls for im-
munoprecipitation. Immunocomplexes were precipitated using
immunoprecipitin from Staphylococus aureus (Life Technolo-
gies, Inc.). The immunoprecipitated proteins were exhaustively
washed, reduced and loaded on 6% SDS-PAGE running gels
with 3.5% stacking gels for the analysis of MUC1 and 4% gels
for MUC5AC. Gels were fixed in 10% methanol and 7% acetic
acid, incubated with Amplify (Amersham Pharmacia Biotech)
and dried. Films were exposed for 1–4 weeks at −80◦C.

Figure 1. FUT1 mRNA detection by RT-PCR in M3-FUT1
clones. Lane 1: Molecular weight marker, 2: HT-29/M3 parental
cells, 3: M3-mock cells, 4: C48, 5: C49, 6: C50, 7: C55, 8: C66
and 9: C81. FUT1 cDNA is not detected in HT-29/M3 parental
cells but is slightly expressed in M3-mock transfected cells.
C48, C49, C50, C55, C66 and C81 are representative M3-FUT1
clones.

Immunoprecipitated proteins separated by electrophoresis
were also transferred onto nitrocellulose membranes. Western
blotting was performed as described above.

Results

M3-FUT1 clones display the “de novo” expression of type 2
Lewis antigens

Using RT-PCR, FUT1 mRNA was not detected in HT-29/M3
and slightly expressed in mock-transfected cells. Instead, in
M3-FUT1 clones FUT1 mRNA was detected, as shown in
Figure 1.

By flow cytometry and immunohistochemistry MUC1 was
detected in all the cell lines, and its expression was used as a
positive control (Figure 2). Lewis type 1 antigens (Lea, Leb,
sLea) were detected in both parental and M3-FUT1 cells by
immunohistochemistry and flow cytometry with low levels of
expression (20–30% of positive cells) (data not shown). Instead,
Lewis type 2 antigens (H type 2 precursor and Ley) were only
detected in M3-FUT1 cells (Figure 2), although sLex was only
focally detected in parental, mock and FUT1-transfected cells.
Clones C50 and C55 were selected because they showed the
highest levels of expression of type 2 antigens (H type 2 and
Ley), 50% of positive cells by immunohistochemistry (Figure 2)
and 80% of positive cells by flow cytometry (Figure 2), and used
for further studies.

FUT1 expression does not induce changes
in the tumorigenicity of the cells

Parental, mock and FUT1-transfected cells were injected
subcutaneously in nude mice (M3 parental n = 4, M3 mock
n = 5, C50 n = 6, and C55 n = 6) to analyse the implication
of type 2 antigens in the formation and growth of tumors. HT-
29/M3 cells and mock-transfected cells develop subcutaneous
tumors of 1 cm3 in 5–6 weeks after injection of the tumor cells.
M3-FUT1 cells, C50 and C55 clones, showed no significant
differences regarding their ability to develop tumors and the
size of the tumors obtained. In all the cases, parental and M3-
FUT1 cells, develop tumors that are histologically classified as
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Figure 2. MUC1 and H type 2 antigen detection by flow cytometry (A, B) and immunohistochemistry (C–F) in M3 parental cells
(A, C, D) and C50 M3-FUT1 transfected cells (B, E, F). MUC1 is detected in both parental and transfected cells (A, B, C, D) but type
2 antigens, H type 2 (A, B) and Lewis y (E, F) are only detected in M3-FUT1 cells.

adenocarcinoma. The tumors originated from M3 parental
cells display a higher degree of differentiation comparing with
the tumors from the C50-FUT1 transfected cells.

Apomucin and Lewis antigen expression was analysed by
immunohistochemistry and we found that the number of cells
expressing both apomucins, MUC1 (data not shown) and
MUC5AC (Figure 3), and Lewis antigens, type 1 (data not
shown) and type 2 (Figure 3), was increased in subcutaneous tu-
mors probably because mucus-secreting cells had been selected
during the growth of the tumors in mice. Also, the expression of
MUC5AC increased with the degree of differentiation of the tu-
mor, until 90–100% of positive tumor cells, compared with the
low levels of MUC5AC expression in HT-29/M3 parental cells,
mock-transfected and transfected cultured cells. The expres-
sion of Lewis type 2 antigens was only detected in the FUT1-
transfected cells (Figure 3). These tumor cells were cultured
and used for further studies. We selected the cell lines M3-4b
and C50-6a from mice injected with M3 parental cell line and
clone C50 respectively, that keep the patterns of apomucin and
Lewis antigen expression from subcutaneous tumors.

←
Figure 3. Apomucin and Lewis antigen expression analysed
by immunohistochemistry on subcutaneous tumors from mice
injected with M3 parental cells (A, C, E, G) and C50 M3-FUT1
clone (B, D, F, H). The expression of MUC5AC (A, B) and Lewis
b (C, D) is detected in tumors from M3 and C50 cells whereas
H type 2 antigen (E, F) and Lewis y (G, H) are only detected in
tumors from C50 cells.
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Figure 4. (A) C50-6a FUT1-transfected cells were pulsed with [35S]-methioninechased at different times (0–24 hours) and immuno-
precipitated using anti-MUC1 M8 antibodies. Immunocomplexes were run on a 6% running gel with 3.5% stacking gel. Markers (-)
indicate the limit between stacking and running gel, and arrowheads indicate the position of 220 and 173 kDa molecular weight
markers. The two lower molecular weight bands corresponding to unglycosylated MUC1 are only present in the lane 0. (B) Immuno-
complexes from C50-6a cells immunoprecipitated with M8 antibody were run on 4% running gels without stacking gel, transferred
onto nitrocellulose and blotted using M8 and 19-0LE antibodies recognising MUC1 and H type 2 antigens respectively. The two high
molecular weight bands corresponding to glycosylated MUC1 colocalise with the bands obtained with 19-0LE antibody.

FUT1 directly instructs the glycosylation of MUC1
and MUC5AC apomucin backbone

HT-29/M3 parental cells express MUC1 and MUC5AC whereas
other mucins as MUC2, MUC4 and MUC6 were not detected
by immunohistochemistry and RT-PCR [40].

Firstly, we labelled the cells with [35S]-methionine and
analysed the expression of MUC1 and MUC5AC by im-
munoprecipitation using specific antibodies (M8 for MUC1
and LUM5.1 for MUC5AC) and developed by autoradiogra-
phy. For MUC1, in M3-4b cells, we found the presence of
two bands of approximately 180 and 250 kDa in 6% SDS-
PAGE running gels that may correspond to the two poly-
morphic precursor forms of apomucin MUC1, as described
[43]. In the stacking gel, we determined the presence of two
higher molecular weight bands corresponding to the glyco-
sylated forms of the previous precursor unglycosylated pro-
teins. In the chase experiments (2–24 hours), only the gly-
cosylated forms appear. The same results were obtained with
C50-6a cells (Figure 4). In any case, we detected bands in the
gel after immunoprecipitation with B12 MoAb negative con-
trol (data not shown). The MUC1 immunoprecipitates were
also run and transferred onto nitrocellulose membranes to as-
say the coimmunoprecipitation with determined oligosaccha-
rides. From these experiments, we found that MUC1 in M3-
4b cells didn’t coimmunoprecipitate with any of the type 2
Lewis antigens studied (H type 2 precursor and Ley) (data
not shown). In C50-6a cells MUC1 coimmunoprecipitated
with H type 2 antigens (Figure 4) and Ley (data not shown)
when blotting was performed using 19-0LE and B3 antibodies
respectively.

Regarding MUC5AC, after labelling M3-4b cells with [35S]-
methionine and immunoprecipitation using LUM5.1 antibod-
ies, we detected a very high molecular weight band in 4% SDS-
PAGE running gels that correspond to the MUC5AC apomucin

Figure 5. M3-4b and C50-6a FUT1-transfected cells were la-
belled with [35S]-methionine, homogenised and immunoprecip-
itation was performed using anti-MUC5AC LUM5.1 antibodies.
Immunocomplexes were run on 4% running gels and developed
by autoradiography (A). Cell lysates were run and transferred
onto nitrocellulose and blotted using LUM5.1 (B). After stripping
the membranes, B3 antibody was blotted (C). In these experi-
ments the colocalisation between MUC5AC and type 2 antigens
(Ley) is only detected in C50-6a cells.

(Figure 5A and B), as described by Van Klinken [44]. In C50-6a
cells, MUC5AC is also detected by autoradiography and west-
ern blotting. This high molecular weight band didn’t appear
when serum from pre-immunized rabbits was used as negative
control (data not shown). When the membranes used to detect
MUC5AC were stripped and incubated with anti-Lewis anti-
gens antibodies, we found that MUC5AC and type 2 structures
(Ley) were codetected in the FUT1-transfected C50-6a cells but
not in parental cells, M3-4b, using LUM5.1 and B3 antibodies
(Figure 5C). The same results were obtained with 19-0LE an-
tibody detecting H type 2 antibodies in the same membranes
(data not shown).
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These results indicate that the induced expression of FUT1
determines the association and coimmunoprecipitation of
MUC1 and MUC5AC with type 2 Lewis antigens in this in
vitro model.

Discussion

In this paper we describe changes in the carbohydrate struc-
tures associated to MUC1 and MUC5AC as a consequence
of FUT1 transfection in HT-29/M3 cells. Until now, there are
only few data supporting directly that apomucin glycosylation
is specifically instructed by the specific set of glycosyltrans-
ferases expressed at the single cell level, and not only directed
by the primary sequence of the protein. Previously, we have
obtained indirect evidence supporting the first hypothesis [32]
from results on gastric carcinogenesis, indicating that the pat-
tern of apomucin glycosylation was not only dependent on the
aminoacid sequence but also in the glycosyltransferases ex-
pressed in each cell type. Supporting these hypothesis, pub-
lished data from in vivo glycosylation experiments of mucin
tandem repeats using chimeric mucins with combinations of
TR domains corresponding to different apomucins, report lim-
ited influence in this posttranslational process by the presence
of these substituted TR domains [45]. Supporting the fact that
glycosyltransferases are responsible for the specific pattern of
mucin glycosylation, Axelsson demonstrated recently that the
neutralisation of pH in the Golgi apparatus causes redistribu-
tion of glycosyltransferases and the consequent changes in the
glycosylation pattern of mucins [46]. Until now, the published
data regarding MUC1 glycosylation are based on the observa-
tion that different carbohydrate structures are associated to the
apomucin core in pathologies as cancer, as is the association
between Ley and MUC1 in ovarian cancer [11]. The differ-
ences in the oligosaccharide profiles that bear breast cancer
cells in comparison to normal breast epithelial cells were re-
ported by Lloyd [47], and the implication of specific glycosyl-
transferases in the glycosylation of MUC1 has been recently
described by Dalziel, reporting the implication of C2GnT1 and
ST3Gal-I enzymes in the O-glycan structure attached to MUC1
protein [48]. Recently, Teatert demonstrated that specific Gal-
NacT are involved in different steps of the sequential process of
O-glycosylation using synthetic peptides mimicking the tandem
repeat of MUC5AC [49,50]. From our results, we conclude that
changes in the pattern of glycosylation of MUC1 and MUC5AC
are based on the expression of FUT1 in the HT-29/M3 in vitro
model, confirming the hypothesis that the expression of specific
fucosyltransferases, in this case FUT1, determines the pattern
of mucin glycosylation.

The transmembrane mucin MUC1 has been described as an
anti-adhesive molecule, and MUC1 overexpression causes inhi-
bition of integrin-mediated cell adhesion to extracellular matrix
components [51]. Zhang et al. reported that sLea and Lex were
associated to MUC1 in colon cancer cells and that glycosy-
lated MUC1 inhibited the adhesion of leukocyte cell line to

cells transfected with E-selectin [52]. MUC1 is also a ligand
for ICAM-1 facilitating the binding to the endothelium in the
process of metastasis [53] and the interaction of MUC1 with E-
cadherin has been demonstrated with anti-adhesive properties
[54].

For MUC5AC, the biological functions proposed are related
to the formation of the gel that covers the epithelial surface in-
cluding the ability of oligomerization associated to the cluster
of mucins in the 11p15.5 locus [55] and also, the long carbo-
hydrate chains attached to the apomucin backbone are respon-
sible for the protective functions proposed for mucins. In this
sense, carbohydrate structures are long and complex in normal
tissues and shorter chains are usually related to pathologies
such as cancer. Also, MUC5AC protein has been detected as-
sociated with pS2 or TFF1 in the superficial mucosa of the
stomach [56,57] and this interaction has been demonstrated us-
ing the yeast 2-hybrid system [58]. The implication of these
small peptides in the renewal of the gastric mucosa after injury
may suggest the implication of MUC5AC in this process, at
least in the stage of stabilisation of the gel that covers the gas-
tric epithelium [59–62]. Regarding the carbohydrates that have
been described to be associated to MUC5AC, Boren reported
that the pathogenic bacteria Helicobacter pylori colonise the
gastric mucosa through the binding of fucosylated structures,
specifically Leb [25]. As we described in a previous report [32],
MUC5AC and Leb show overlapping patterns of expression in
the mucus-secreting cells of the superficial epithelium of the
stomach and that correlates with the pattern of expression of
the α-1,2-fucosyltransferase FUT2. With the present demon-
stration that type 2 antigens are directly attached to MUC5AC
using a biochemical approach, it might be possible the implica-
tion of MUC5AC in the pathogenesis of H. pylori in the gastric
mucosa. Supporting this hypothesis, Van den Brink reported
recently the colocalisation of MUC5AC with H.pylori in the
gastric mucosa [63].

From our results, the transfection of FUT1 and the expres-
sion of type 2 antigens in HT-29/M3 cells didn’t correlate
with changes in the expression of other carbohydrates as type
1 antigens. Sepp [64] reported an increase in the expression
of H antigen and the de novo expression of Ley after the
transfection of PLECT porcine endothelial cells with human
FUT1, together with a reduction in the levels of expression
of porcine α-galactose antigen and sialylated structures, sug-
gesting the competition between α-1,2-fucosyltransferases, α-
1,3-galactosyltransferases and sialyltransferases, as the activ-
ities of theses enzymes were not altered. Previously, Sharma
[65] demonstrated the competition in vitro between α-1,3-
galactosyltransferases and α-1,2-fucosyltransferases for the
same glycoprotein substrate using CHO cells. In the case of
HT-29 cell line, it has been reported the expression of α-2,3-ST
and four different α-1,3/1,4-FucT by RT-PCR that give rise to
Lea and Lex and the sialylated structures sLea and sLex [66].
Recently, Gouyer et al. reported the expression of several sia-
lyltransferases in HT-29 cells by multiplex RT-PCR and their
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corresponding enzymatic activity [67] but there is no data re-
porting the pattern of sialyltransferase and fucosyltransferase
expression on HT-29/M3 cells. In these cells, we have also
found low levels of expression of FUT2 and FUT3 giving rise
to the expression of type 1 Lewis antigens at low levels [33].
Furthermore, we haven’t found differences in the expression
of sialylated structures in the transfected cells when compared
with the low levels of expression detected in the parental cell
line. Altogether, the low levels of carbohydrates synthesised in
HT-29/M3 cells make it difficult to find slight differences in
their levels of expression.

In conclusion, our results using the HT-29/M3-FUT1 in vitro
model indicate that the specific glycosylation patterns displayed
by the mucin molecules MUC1 and MUC5AC is instructed, in
the case of fucosylated structures, by the specific set of gly-
cosyltransferases expressed in the cell and not by the primary
aminoacid sequence. As fucosylated carbohydrates has been
implicated in the bacterial colonisation of gastric epithelial
cells, the in vitro models synthesising these epitopes may be
useful to better analyse the processes that occur in the gastric
epithelium during the colonisation process.
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